Cmath in c
Author: m | 2025-04-25
CMATH for Lazarus - CMATH is a comprehensive library for complex-number arithmetics and mathematics. System Utilities; Photo Graphics; Multimedia; Games; such as Lazarus Form Recovery, CMath for Visual C or CMath for C Builder, which might be similar to CMATH for Lazarus. Download CMATH for Lazarus. useful. How to clean registry .
C cmath Library Reference (cmath functions)
The abs() function in C++ returns the absolute value of the argument. It is defined in the cmath header file.Mathematically, abs(num) = |num|.Example#include #include using namespace std;int main() { // get absolute value of -5.5 cout return 0;}// Output: 5.5Syntax of abs()The syntax of the abs() function is:abs(double num);abs() ParametersThe abs() function takes the following parameter: num - a floating point number whose absolute value is returned. It can be of the following types: double float long double abs() Return ValueThe abs() function returns: the absolute value of num i.e. |num|abs() PrototypesThe prototypes of abs() as defined in the cmath header file are:double abs(double num);float abs(float num);long double abs(long double num);// for integral typesdouble abs(T num);Note: The cmath abs() function is identical to the fabs() function.Example 1: C++ abs()#include #include using namespace std;int main() { double num = -87.91, result; result = abs(num); cout Outputabs(-87.91) = |-87.91| = 87.91Example 2: C++ abs() for Integral Types#include #include using namespace std;int main() { int num = -101; double result; result = abs(num); cout Outputabs(-101) = |-101| = 101
C cmath Library Reference (cmath functions) - W3Schools
Related searches » supported apps downloads » actionvoip downloads latest updates » glary utilities downloads latest edition » openal latest version free downloads » latest apache tomcat server downloads » latest lg burnig studio free downloads » toolwiz latest version free downloads » jinitiator latest downloads » latest music downloads » the latest asus ai recovery downloads latest supported visual c downloads at UpdateStar More CMATH for Visual C++ 8.0.1 OptiCode - Dr. Martin Sander Software Dev. - Shareware - Review of CMATH for Visual C++ by OptiCodeCMATH for Visual C++ by OptiCode, developed by Dr. Martin Sander, is a powerful mathematical library that extends the functionality of Visual C++ programming. more info... More Microsoft Visual C++ 2010 Redistributable 12.0.30501 Microsoft - Freeware - Review: Microsoft Visual C++ 2010 Redistributable by MicrosoftMicrosoft Visual C++ 2010 Redistributable is a software application developed by Microsoft that provides runtime components for programs built with Microsoft Visual C++ 2010. more info... More Microsoft Visual C++ 2008 Redistributable 11.0.61030.0 Microsoft - 2.6MB - Freeware - Editor's Review: Microsoft Visual C++ 2008 RedistributableMicrosoft Visual C++ 2008 Redistributable is a software package developed by Microsoft that allows you to run applications created using Visual C++ on a computer that does not … more info... More Microsoft Visual C++ 2015 Redistributable Package 14.42.34226.3 Microsoft - 13.9MB - Freeware - The Microsoft Visual C++ 2015 Redistributable Package is a software component created by Microsoft. It provides users with the necessary runtime components to run applications created using Visual Studio 2015. more info... More UpdateStar Premium Edition 15.0.1962 UpdateStar - 8.2MB - Commercial - UpdateStar Premium Edition: A Practical Tool for Managing Your Software Updates UpdateStar Premium Edition is a software management tool designed to help keep your PC in top shape by making sure your programs are up toC cmath Library Reference (cmath functions) - cn.w3schools.com
Site Index: OptiVec homeMatrixLibCMATHDownloadOrderUpdateSupportVectorLibVectorLib is the vector functions part of OptiVec. This file describes the basic principles of the OptiVec libraries and gives an overview over VectorLib. The new object-oriented interface, VecObj, is described in chapter 3. MatrixLib and CMATH are described separately.This is the English version. Translation of the first three chapters into Portuguese by Artur Weber for Introduction2. The Elements of OptiVec Routines3. C++ only: VecObj, the Object-Oriented Interface for VectorLib4. VectorLib Functions and Routines: A Short Overview4.1 Generation, Initialization and De-Allocation of Vectors4.2 Index-oriented Manipulations4.3 Data-Type Interconversions4.4 More about Integer Arithmetics4.5 Basic Functions of Complex Vectors4.6 Mathematical Functions4.6.1 Rounding4.6.2 Comparisons4.6.3 Direct Bit-Manipulation4.6.4 Basic Arithmetics, Accumulations4.6.5 Geometrical Vector Arithmetics4.6.6 Powers4.6.7 Exponentials and Hyperbolic Functions4.6.8 Logarithms4.6.9 Trigonometric Functions4.7 Analysis4.8 Signal Processing: Fourier Transforms and Related Topics4.9 Statistical Functions and Building Blocks4.10 Data Fitting4.11 Input and Output4.12 Graphics5. Error Handling6. Trouble-Shooting7. The Include-Files and Units of OptiVec1. IntroductionOptiVec offers a powerful set of routines for numerically demanding applications, making the philosophy of vectorized programming available for C/C++ and Pascal/Delphi languages. It serves to overcome the limitations of loop management of conventional compilers – which proved to be one of the largest obstacles in the programmer's way towards efficient coding for scientific and data analysis applications.In contrast to integrated packages like MatLab or others, OptiVec has the advantage of being incorporated into the modern and versatile languages C/C++ and Pascal/Delphi. Both C++ and Fortran do already offer some sort of vector processing, by virtue of iterator classes using templates (C++) and field functions (Fortran90). Both of these, however, are basically a convenient means of letting the compiler write the loop for you and then compile it to the usual inefficient code. The same is true for most implementations of the popular BLAS (Basic Linear Algebra Subroutine) libraries.In comparison to these approaches, OptiVec is superior mainly with respect to execution speed – on the average by a factor of 3, in some cases even up to 8. The performance is no longer limited by the quality of your compiler, but rather by the real speed of the processor!There is a certain overlap in the range of functions offered by OptiVec and by BLAS, LINPACK, and other libraries and source-code collections. However, the latter must be compiled, and, consequently, their performance is determined mainly by the quality of the compiler chosen. To the best of our knowledge, OptiVec, was. in 1996, the first product on the market offering a comprehensive vectorized-functions library realized in a true Assembler implementation.All operators and mathematical functions of C/C++ are implemented in vectorized form; additionally many more mathematical functions are included which normally would have to be calculated by more or less complicated combinations of existing functions. Not. CMATH for Lazarus - CMATH is a comprehensive library for complex-number arithmetics and mathematics. System Utilities; Photo Graphics; Multimedia; Games; such as Lazarus Form Recovery, CMath for Visual C or CMath for C Builder, which might be similar to CMATH for Lazarus. Download CMATH for Lazarus. useful. How to clean registry . C Documentation. Contribute to MicrosoftDocs/cpp-docs development by creating an account on GitHub. Learn more about: cmath cmath cmath cmath headerCmath library c - واستخداماتها cmath مكتبة - YouTube
Which is familiar to Pascal/Delphi programmers, is defined as a synonym for "long double" in OptiVec for C/C++. As Visual C++ does not support 80-bit reals, we define extended as "double" in the OptiVec versions for that compiler.b) Delphi only:The data type Float, which is familiar to C/C++ programmers, is defined as a synonym for Single. We prefer to have the letters defining the real-number data types in alphabetical proximity: "D" for Double, "E" for Extended, and "F" for Float. The letters "G" and "H" are already reserved for Great (128-bit real) and Half (16-bit real). For historical reasons (dating back to the development of Turbo Pascal), the various integer data types have a somewhat confusing nomenclature in Delphi. In order to make the derived function prefixes compatible with the C/C++ versions of OptiVec, we define a number of synonyms, as described in the following table:typeDelphi namesynonymderived prefix8 bit signedShortIntByteIntVBI_8 bit unsignedByteUByteVUB_16 bit signed SmallInt VSI_16 bit unsigned WordUSmallVUS_32 bit signed LongInt VLI_32 bit unsigned ULongVUL_64 bit signed Int64QuadIntVQI_64 bit unsigned (x64 version only!)UInt64UQuadVUQ_16/32 bit signedInteger VI_16/32 bit unsignedCardinalUIntVU_To have a Boolean data type available which is of the same size as Integer, we define the type IntBool. It is equivalent to LongBool in Delphi. You will see the IntBool type as the return value of many mathematical VectorLib functions. 2.2 Complex NumbersAs described in greater detail for CMATH, OptiVec supports complex numbers both in cartesian and polar format. If you use only the vectorized complex functions (but not the scalar functions of CMATH), you need not explicitly include CMATH. In this case, the following complex data types are defined in for C/C++: typedef struct { float Re, Im; } fComplex;typedef struct { double Re, Im; } dComplex;typedef struct { extended Re, Im; } eComplex;typedef struct { float Mag, Arg; } fPolar;typedef struct { double Mag, Arg; } dPolar;typedef struct { extended Mag, Arg; } ePolar;The corresponding definitions for Pascal/Delphi are contained in the unit VecLib:type fComplex = record Re, Im: Float; end;type dComplex = record Re, Im: Double; end;type eComplex = record Re, Im: Extended; end;type fPolar = record Mag, Arg: Float; end;type dPolar = record Mag, Arg: Double; end;type ePolar = record Mag, Arg: Extended; end;If, for example, a complex number z is declared as "fComplex z;", the real and imaginary parts of z are available as z.Re and z.Im, resp. Complex numbers are initialized either by setting the constituent parts separately to the desired value, e.g., z.Re = 3.0; z.Im = 5.7;p.Mag = 4.0; p.Arg = 0.7;(of course, the assignment operator is := in Pascal/Delphi).Alternatively, the same initialization can be accomplished by thefunctions fcplx or fpolr:C/C++:z = fcplx( 3.0, 5.7 );p = fpolr( 4.0, 0.7 );Pascal/Delphi:fcplx( z,cmath (math.h) - C Users
IntroductionThe tan() function in C++ is part of the cmath library, used to calculate the tangent of an angle given in radians. This mathematical function is widely used in fields such as engineering, physics, and computer graphics for performing trigonometric calculations precisely.In this article, you will learn how to effectively use the tan() function in C++. The examples provided will demonstrate how to calculate the tangent for both specific angles and dynamically during runtime, along with handling specific mathematical considerations such as angles that yield undefined tangent values.Utilizing tan() in C++Calculating Tangent of a Specific AngleInclude the cmath library to access the tan() function.Define an angle in radians.Calculate the tangent of the angle using tan(). cpp #include #include int main() { double angle = M_PI / 4; // 45 degrees double tangent = std::tan(angle); std::cout "The tangent of 45 degrees is: " tangent std::endl; return 0;} This code calculates the tangent of 45 degrees (π/4 radians). The output should approximate 1, as the tangent of 45 degrees equals 1.Handling Angles with Undefined TangentUnderstand that the tangent function has undefined values at odd multiples of π/2 (90 degrees, 270 degrees, etc.).Check if the angle is an odd multiple of π/2 before calling tan().Provide an appropriate response or handling mechanism for these cases. cpp #include #include #include int main() { double angle = M_PI / 2; // 90 degrees if (fmod(angle, M_PI / 2) == 0 && (int)(angle / (M_PI / 2)) % 2 != 0) { std::cout "The tangent of 90 degrees is undefined." std::endl; } else { double tangent = std::tan(angle); std::cout "The tangent of the angle is: " tangent std::endl; } return 0;} In this example, the code checks if angle is an odd multiple of π/2, where the tangent function is classically undefined. If it is, it outputs a message indicating so; otherwise, it calculates the tangent.Dynamic Tangent CalculationPrompt the user to input an angle.Calculate and display the tangent of the entered angle. cpp #include #include int main() { double angle; std::cout "Enter an angle in radians: "; std::cin >> angle; double tangent = std::tan(angle); std::cout "The tangent of " angle " radians is: " tangent std::endl; return 0;} This program takes an angle in radians from the user and calculates its tangent, which is then displayed. This approach allows for dynamic calculation based on user input.ConclusionUsing the tan() function from the cmath library in C++ enables precisecmath (math.h) - Belajar C
// plot() takes an arbitrary number of (x,y,format)-triples. // x must be iterable (that is, anything providing begin(x) and end(x)), // y must either be callable (providing operator() const) or iterable. plt::plot(x, y, "r-", x, [](double d) { return 12.5+abs(sin(d)); }, "k-"); // show plots plt::show();}g++ modern.cpp -std=c++11 -I/usr/include/python2.7 -lpythonResult:Or some funny-looking xkcd-styled example:#include namespace plt = matplotlibcpp;int main() { std::vector t(1000); std::vector x(t.size()); for(size_t i = 0; i #include "matplotlibcpp.h"#include vector>#include cmath>namespace plt = matplotlibcpp;int main() { std::vectordouble> t(1000); std::vectordouble> x(t.size()); for(size_t i = 0; i size(); i++) { t[i] = i / 100.0; x[i] = sin(2.0 * M_PI * 1.0 * t[i]); } plt::xkcd(); plt::plot(t, x); plt::title("AN ORDINARY SIN WAVE"); plt::save("xkcd.png");}g++ xkcd.cpp -std=c++11 -I/usr/include/python2.7 -lpython2.7Result:When working with vector fields, you might be interested in quiver plots: x, y, u, v; for (int i = -5; i #include "matplotlibcpp.h"namespace plt = matplotlibcpp;int main(){ // u and v are respectively the x and y components of the arrows we're plotting std::vectorint> x, y, u, v; for (int i = -5; i 5; i++) { for (int j = -5; j 5; j++) { x.push_back(i); u.push_back(-i); y.push_back(j); v.push_back(-j); } } plt::quiver(x, y, u, v); plt::show();}g++ quiver.cpp -std=c++11 -I/usr/include/python2.7 -lpython2.7Result:When working with 3d functions, you might be interested in 3d plots:> x, y, z; for (double i = -5; i x_row, y_row, z_row; for (double j = -5; j #include "matplotlibcpp.h"namespace plt = matplotlibcpp;int main(){ std::vectordouble>> x, y, z; for (double i = -5; i 5; i += 0.25) { std::vectordouble> x_row,C cmath 한국어 - Runebook.dev
Matplotlib-cppWelcome to matplotlib-cpp, possibly the simplest C++ plotting library.It is built to resemble the plotting API used by Matlab and matplotlib.UsageComplete minimal example:#include "matplotlibcpp.h"namespace plt = matplotlibcpp;int main() { plt::plot({1,3,2,4}); plt::show();}g++ minimal.cpp -std=c++11 -I/usr/include/python2.7 -lpython2.7Result:A more comprehensive example:namespace plt = matplotlibcpp;int main(){ // Prepare data. int n = 5000; std::vector x(n), y(n), z(n), w(n,2); for(int i=0; i#include "matplotlibcpp.h"#include cmath>namespace plt = matplotlibcpp;int main(){ // Prepare data. int n = 5000; std::vectordouble> x(n), y(n), z(n), w(n,2); for(int i=0; iat(i) = i*i; y.at(i) = sin(2*M_PI*i/360.0); z.at(i) = log(i); } // Set the size of output image to 1200x780 pixels plt::figure_size(1200, 780); // Plot line from given x and y data. Color is selected automatically. plt::plot(x, y); // Plot a red dashed line from given x and y data. plt::plot(x, w,"r--"); // Plot a line whose name will show up as "log(x)" in the legend. plt::named_plot("log(x)", x, z); // Set x-axis to interval [0,1000000] plt::xlim(0, 1000*1000); // Add graph title plt::title("Sample figure"); // Enable legend. plt::legend(); // Save the image (file format is determined by the extension) plt::save("./basic.png");}g++ basic.cpp -I/usr/include/python2.7 -lpython2.7Result:Alternatively, matplotlib-cpp also supports some C++11-powered syntactic sugar:#include "matplotlibcpp.h"using namespace std;namespace plt = matplotlibcpp;int main(){ // Prepare data. int n = 5000; // number of data points vector x(n),y(n); for(int i=0; i#include cmath>#include "matplotlibcpp.h"using namespace std;namespace plt = matplotlibcpp;int main(){ // Prepare data. int n = 5000; // number of data points vectordouble> x(n),y(n); for(int i=0; idouble t = 2*M_PI*i/n; x.at(i) = 16*sin(t)*sin(t)*sin(t); y.at(i) = 13*cos(t) - 5*cos(2*t) - 2*cos(3*t) - cos(4*t); }. CMATH for Lazarus - CMATH is a comprehensive library for complex-number arithmetics and mathematics. System Utilities; Photo Graphics; Multimedia; Games; such as Lazarus Form Recovery, CMath for Visual C or CMath for C Builder, which might be similar to CMATH for Lazarus. Download CMATH for Lazarus. useful. How to clean registry . C Documentation. Contribute to MicrosoftDocs/cpp-docs development by creating an account on GitHub. Learn more about: cmath cmath cmath cmath header
C cmath Русский - Runebook.dev
Matplotlib-cppWelcome to matplotlib-cpp, possibly the simplest C++ plotting library.It is built to resemble the plotting API used by Matlab and matplotlib.UsageComplete minimal example:#include "matplotlibcpp.h"namespace plt = matplotlibcpp;int main() { plt::plot({1,3,2,4}); plt::show();}g++ minimal.cpp -std=c++11 -I/usr/include/python2.7 -lpython2.7Result:A more comprehensive example:namespace plt = matplotlibcpp;int main(){ // Prepare data. int n = 5000; std::vector x(n), y(n), z(n), w(n,2); for(int i=0; i#include "matplotlibcpp.h"#include cmath>namespace plt = matplotlibcpp;int main(){ // Prepare data. int n = 5000; std::vectordouble> x(n), y(n), z(n), w(n,2); for(int i=0; iat(i) = i*i; y.at(i) = sin(2*M_PI*i/360.0); z.at(i) = log(i); } // Set the size of output image to 1200x780 pixels plt::figure_size(1200, 780); // Plot line from given x and y data. Color is selected automatically. plt::plot(x, y); // Plot a red dashed line from given x and y data. plt::plot(x, w,"r--"); // Plot a line whose name will show up as "log(x)" in the legend. plt::named_plot("log(x)", x, z); // Set x-axis to interval [0,1000000] plt::xlim(0, 1000*1000); // Add graph title plt::title("Sample figure"); // Enable legend. plt::legend(); // Save the image (file format is determined by the extension) plt::save("./basic.png");}g++ basic.cpp -I/usr/include/python2.7 -lpython2.7Result:Alternatively, matplotlib-cpp also supports some C++11-powered syntactic sugar:#include "matplotlibcpp.h"using namespace std;namespace plt = matplotlibcpp;int main(){ // Prepare data. int n = 5000; // number of data points vector x(n),y(n); for(int i=0; i#include cmath>#include "matplotlibcpp.h"using namespace std;namespace plt = matplotlibcpp;int main(){ // Prepare data. int n = 5000; // number of data points vectordouble> x(n),y(n); for(int i=0; idouble t = 2*M_PI*i/n; x.at(i) = 16*sin(t)*sin(t)*sin(t); y.at(i) = 13*cos(t) - 5*cos(2*t) - 2*cos(3*t) - cos(4*t); } // plot() takes an arbitrary number of (x,y,format)-triples. // x must be iterable (that is, anything providing begin(x) and end(x)), // y must either be callable (providing operator() const) or iterable. plt::plot(x, y, "r-", x, [](double d) { return 12.5+abs(sin(d)); }, "k-"); // show plots plt::show();}g++ modern.cpp -std=c++11 -I/usr/include/python2.7 -lpythonResult:Or some funny-looking xkcd-styled example:#include namespace plt = matplotlibcpp;int main() { std::vector t(1000); std::vector x(t.size()); for(size_t i = 0; i #include "matplotlibcpp.h"#include vector>#include cmath>namespace plt = matplotlibcpp;int main() { std::vectordouble> t(1000); std::vectordouble> x(t.size()); for(size_t i = 0; i size(); i++) { t[i] = i / 100.0; x[i] = sin(2.0 * M_PI * 1.0 * t[i]); } plt::xkcd(); plt::plot(t, x); plt::title("AN ORDINARY SIN WAVE"); plt::save("xkcd.png");}g++ xkcd.cpp -std=c++11 -I/usr/include/python2.7 -lpython2.7Result:When working with vector fields, you might be interested in quiver plots: x, y, u, v; for (int i = -5; i #include "../matplotlibcpp.h"namespace plt = matplotlibcpp;int main(){ // u and v are respectively the x and y components of the arrows we're plotting std::vectorint> x, y, u, v; for (int i = -5; i 5; i++) { for (int j = -5; j 5; j++) { x.push_back(i); u.push_back(-i); y.push_back(j); v.push_back(-j); } } plt::quiver(x, y, u, v); plt::show();}g++ quiver.cpp -std=c++11 -I/usr/include/python2.7 -lpython2.7Result:When working with 3d functions, you might be interested in 3d plots:> x, y, z; for (double i = -5; i x_row, y_row, z_row; for (double j = -5; j #include "../matplotlibcpp.h"namespace plt = matplotlibcpp;int main(){ std::vectordouble>> x, y, z; for (double i = -5; i 5; i += 0.25) { std::vectordouble> x_row,Cmath Library - C Forum - C Users
大家好,我是小鱼,最近因为工作上的需要,把自己一两年前做的开源库又进行了维护,新增了点云坐标转换功能,小鱼测试速度可以嗖嗖的.再次分享给大家.这个库功能和ROS的TF相似,但完全基于Eigen实现,不用像ROS那样需要很多依赖,在自己开发机器人和导航系统的时候会派上用场.开源地址1: | Wiki:函数列表一、安装与使用1.源码引入复制trans_forms_group.cpp,trans_forms.cpp,transforms3d.h到你的工程即可2.编译安装git clone transforms3d_cppmkdir build && cd buildcmake ..sudo make installsudo ldconfig3.使用样例例子1:利用TransformsGroup进行手眼矩阵估算#include #include using namespace std;using namespace Eigen;#include "gtest/gtest.h"TEST(TestTransFormGroup, BaseFindPath) { /* base@grapper */ Matrix4d Tbg = TransForms::ComposeEuler(-0.544, -0.203, -0.037, 180, 0.00000, 140); /* camera@maker*/ Matrix4d Tcw = TransForms::ComposeEuler(0.020, -0.040, 0.300, 0, 0, -45); /* base@bottle */ Matrix4d Tbw = TransForms::ComposeEuler(-0.663, -0.193, -0.231, -180, 0, 140); TransFormsGroup tfg; tfg.pushTransForm("base", "grapper", Tbg); tfg.pushTransForm("camera", "bottle", Tcw); tfg.pushTransForm("base", "bottle", Tbw); cout /* * @Descripttion: * @Author: sangxin * @Date: 2021-05-01 21:04:19 * @LastEditTime: 2021-05-02 23:39:20 */#include cmath>#include iostream>#include transforms3d/transforms3d.h>using namespace std;using namespace Eigen;#include "gtest/gtest.h"TEST(TestTransFormGroup, BaseFindPath) { /* base@grapper */ Matrix4d Tbg = TransForms::ComposeEuler(-0.544, -0.203, -0.037, 180, 0.00000, 140); /* camera@maker*/ Matrix4d Tcw = TransForms::ComposeEuler(0.020, -0.040, 0.300, 0, 0, -45); /* base@bottle */ Matrix4d Tbw = TransForms::ComposeEuler(-0.663, -0.193, -0.231, -180, 0, 140); TransFormsGroup tfg; tfg.pushTransForm("base", "grapper", Tbg); tfg.pushTransForm("camera", "bottle", Tcw); tfg.pushTransForm("base", "bottle", Tbw); cout toString() TransForms::H2EulerAngle(tfg.getTransForm("grapper", "camera")); Matrix4d Tgc = Tbg.inverse() * Tbw * Tcw.inverse(); cout TransForms::H2EulerAngle(Tgc);}例子2:使用TransformsGroup进行点云坐标转换 points; for (int i = 0; i /* base@llaser1 */ Matrix4d base2llaser1 = TransForms::ComposeEuler(0, 0, 0, 180, 0, 0); TransFormsGroup tfg; tfg.pushTransForm("base_link", "laser", base2llaser1); std::vector points; for (int i = 0; i 2; i++) { points.push_back({0, 0, (float)(i + 1) / 1000.0}); printf("%d(%f,%f,%f),", i, points[i].x(), points[i].y(), points[i].z()); } tfg.getTransWithPointCloud("laser", points, "base_link"); for (int i = 0; i 2; i++) { printf("%d(%f,%f,%f),", i, points[i].x(), points[i].y(), points[i].z()); EXPECT_DOUBLE_EQ(points[i].z(), -(float)(i + 1) / 1000.0); }例子3: 欧拉角转换#include "gtest/gtest.h"TEST(TestTransForm, Euler2Mat){ IOFormat HeavyFmt(FullPrecision, 0, ", ", ";\n", "[", "]", "[", "]"); std::string sep = "\n----------------------------------------\n"; Eigen::Vector3d rot(76, 14, -72.511); // r p y Matrix3d matrix = TransForms::EulerAngle2Mat(rot); Vector3d rotr = TransForms::Mat2EulerAngle(matrix); std::cout format(HeavyFmt) eulerAngles(2, 1, 0).format(HeavyFmt) x() " " y() " " z() /* base@llaser1 */ Matrix4d base2llaser1 = TransForms::ComposeEuler(0.043, -0.163, 0.0571, 76, 14, -72.511); // xyz yam pitch roll std::cout format(HeavyFmt) // base2llaser1}二、 函数列表1.基础部分1.1 角度转换角度转弧度 /** * @description: 角度转为弧度 * @param {double} angle 角度值 * @return 返回对应弧度值,一般在-3.14~3.14之间 */ static double Degrees(double angle);弧度转角度 /** * @description: 弧度转为角度 * @param {double} degrees 弧度值 * @return 返回对应的角度值,一般在-180~180之间 */ static double Angle(double degrees);1.2 欧拉角部分角度制欧拉角转旋转矩阵 /** * @description: 角度制欧拉角转旋转矩阵,此函数默认的旋转顺序是x-y-z. * @param {double} rx 绕x轴的旋转. * @param {double} ry 绕y轴的旋转. * @param {double} rz 绕z轴的旋转. * @return {Matrix3d} 返回3✖3的旋转矩阵. */ static Matrix3d EulerAngle2Mat(double rx, double ry, double rz);欧拉角转旋转矩阵 /** * @description: 欧拉角转旋转矩阵 * @param {Vector3d} eular 欧拉角rx,ry,rz * @return {Matrix3d} 返回3✖3的旋转矩阵. */ static Matrix3d EulerAngle2Mat(Vector3d eular);欧拉角转四元数 /** * @description:欧拉角转四元数 * @param {double} rx 绕x轴的旋转 * @param {double} ry 绕y轴的旋转 * @param {double} rz 绕z轴的旋转 * @return {Quaterniond} 返回对应的四元数 */ static Quaterniond Euler2Quat(double rx, double ry, double rz);角度制欧拉角转四元数 /** * @description: 角度制欧拉角转四元数 * @param {double} rx 绕x轴的旋转 * @param {double} ry 绕y轴的旋转 * @param {double} rz 绕z轴的旋转 * @return {Quaterniond} 返回对应的四元数 */ static Quaterniond EulerAngle2Quat(double rx, double ry, double rz);旋转矩阵转欧拉角(弧度制) /** * @description: 旋转矩阵转欧拉角(弧度制) * @param {Matrix3d} 3✖3的旋转矩阵. CMATH for Lazarus - CMATH is a comprehensive library for complex-number arithmetics and mathematics. System Utilities; Photo Graphics; Multimedia; Games; such as Lazarus Form Recovery, CMath for Visual C or CMath for C Builder, which might be similar to CMATH for Lazarus. Download CMATH for Lazarus. useful. How to clean registry .No need of cmath? - C Forum - C Users
[C#] [F#] Peace [C#] like a river, wash over me [F#] Immerse [C#] me in water as deep as the sea Hide [F#] [C#] me in love, your healing embrace Peace [F#] like a river, [C#] wash over me As I [F#] worship your majesty [C#] I [G#] worship your holy name Jesus [F#] my everything [C#] All [G#] that I am is yours [F#] [C#] Come [D#] [G#] [C#] Holy [F#] Spirit Come [C#] Holy Spirit, rain down [G#] on me [C#] [F#] Break [C#] open the heaven and drench me [G#] I've seen [A#] [F#] Pour [C#] out your presence as I pour [G#] out your presence [A#] Come [F#] Holy Spirit, [C#] Lord have [G#] your way As I worship [F#] your majesty [C#] I worship [G#] your holy name Jesus [F#] my everything [C#] All [G#] that I am is yours I worship [F#] your majesty [C#] I [G#] worship your [C#] holy [G#] name Jesus [F#] my everything [C#] All [G#] that I am [C#] [G#] is yours [C#] Open [F#] [C#] [G#m] [C#] [F#] [C#] the heaven, bring water [G#] [C#] [G#] [F#] to my sea Pour [C#] out your presence, [G#] [C#] [F#] open [C#] your heaven [F#] [C#] As we cry out, [F#] [C#] flood every heart [F#] I see Pour [C#] out your presence, and have it all As we cry out [F#] [C#] [G#] [C#] Lord [F#] [C#] [G#] [C#] [F#] [C#] [G#] [C#] [Fm] [F#] send revival, Lord [C#] send it now Remove of your sweet ache, heaven break Come [G#] now in [F#] power, [G#] cover [C#] this land Like you've done it before [G#] [C#] [Fm] Lord send revival, [G#] Lord [C#] send it now Remove of your [G#] spirit, heaven break Come now in [F#] power, cover [C#] this land Like you've done it before [G#] [C#] Lord [Fm] [F#] send revival, Lord [C#] send it now Remove of [G#] your spirit, heaven break Come [F#] now in power, cover [C#] this land Like you've done it [G#] before Would you do it again? [C#] Lord [F#] send revival, Lord [C#] send it now Remove of your spirit, heaven break [G#] Come [F#] now in power, cover [C#] this land Like you've done it before Would you do [F#] it again? [C#] [G#] [F#] Break out [C#] [G#] [C#] Lord [F#] send revival, Lord [C#] sendComments
The abs() function in C++ returns the absolute value of the argument. It is defined in the cmath header file.Mathematically, abs(num) = |num|.Example#include #include using namespace std;int main() { // get absolute value of -5.5 cout return 0;}// Output: 5.5Syntax of abs()The syntax of the abs() function is:abs(double num);abs() ParametersThe abs() function takes the following parameter: num - a floating point number whose absolute value is returned. It can be of the following types: double float long double abs() Return ValueThe abs() function returns: the absolute value of num i.e. |num|abs() PrototypesThe prototypes of abs() as defined in the cmath header file are:double abs(double num);float abs(float num);long double abs(long double num);// for integral typesdouble abs(T num);Note: The cmath abs() function is identical to the fabs() function.Example 1: C++ abs()#include #include using namespace std;int main() { double num = -87.91, result; result = abs(num); cout Outputabs(-87.91) = |-87.91| = 87.91Example 2: C++ abs() for Integral Types#include #include using namespace std;int main() { int num = -101; double result; result = abs(num); cout Outputabs(-101) = |-101| = 101
2025-04-13Related searches » supported apps downloads » actionvoip downloads latest updates » glary utilities downloads latest edition » openal latest version free downloads » latest apache tomcat server downloads » latest lg burnig studio free downloads » toolwiz latest version free downloads » jinitiator latest downloads » latest music downloads » the latest asus ai recovery downloads latest supported visual c downloads at UpdateStar More CMATH for Visual C++ 8.0.1 OptiCode - Dr. Martin Sander Software Dev. - Shareware - Review of CMATH for Visual C++ by OptiCodeCMATH for Visual C++ by OptiCode, developed by Dr. Martin Sander, is a powerful mathematical library that extends the functionality of Visual C++ programming. more info... More Microsoft Visual C++ 2010 Redistributable 12.0.30501 Microsoft - Freeware - Review: Microsoft Visual C++ 2010 Redistributable by MicrosoftMicrosoft Visual C++ 2010 Redistributable is a software application developed by Microsoft that provides runtime components for programs built with Microsoft Visual C++ 2010. more info... More Microsoft Visual C++ 2008 Redistributable 11.0.61030.0 Microsoft - 2.6MB - Freeware - Editor's Review: Microsoft Visual C++ 2008 RedistributableMicrosoft Visual C++ 2008 Redistributable is a software package developed by Microsoft that allows you to run applications created using Visual C++ on a computer that does not … more info... More Microsoft Visual C++ 2015 Redistributable Package 14.42.34226.3 Microsoft - 13.9MB - Freeware - The Microsoft Visual C++ 2015 Redistributable Package is a software component created by Microsoft. It provides users with the necessary runtime components to run applications created using Visual Studio 2015. more info... More UpdateStar Premium Edition 15.0.1962 UpdateStar - 8.2MB - Commercial - UpdateStar Premium Edition: A Practical Tool for Managing Your Software Updates UpdateStar Premium Edition is a software management tool designed to help keep your PC in top shape by making sure your programs are up to
2025-04-15Which is familiar to Pascal/Delphi programmers, is defined as a synonym for "long double" in OptiVec for C/C++. As Visual C++ does not support 80-bit reals, we define extended as "double" in the OptiVec versions for that compiler.b) Delphi only:The data type Float, which is familiar to C/C++ programmers, is defined as a synonym for Single. We prefer to have the letters defining the real-number data types in alphabetical proximity: "D" for Double, "E" for Extended, and "F" for Float. The letters "G" and "H" are already reserved for Great (128-bit real) and Half (16-bit real). For historical reasons (dating back to the development of Turbo Pascal), the various integer data types have a somewhat confusing nomenclature in Delphi. In order to make the derived function prefixes compatible with the C/C++ versions of OptiVec, we define a number of synonyms, as described in the following table:typeDelphi namesynonymderived prefix8 bit signedShortIntByteIntVBI_8 bit unsignedByteUByteVUB_16 bit signed SmallInt VSI_16 bit unsigned WordUSmallVUS_32 bit signed LongInt VLI_32 bit unsigned ULongVUL_64 bit signed Int64QuadIntVQI_64 bit unsigned (x64 version only!)UInt64UQuadVUQ_16/32 bit signedInteger VI_16/32 bit unsignedCardinalUIntVU_To have a Boolean data type available which is of the same size as Integer, we define the type IntBool. It is equivalent to LongBool in Delphi. You will see the IntBool type as the return value of many mathematical VectorLib functions. 2.2 Complex NumbersAs described in greater detail for CMATH, OptiVec supports complex numbers both in cartesian and polar format. If you use only the vectorized complex functions (but not the scalar functions of CMATH), you need not explicitly include CMATH. In this case, the following complex data types are defined in for C/C++: typedef struct { float Re, Im; } fComplex;typedef struct { double Re, Im; } dComplex;typedef struct { extended Re, Im; } eComplex;typedef struct { float Mag, Arg; } fPolar;typedef struct { double Mag, Arg; } dPolar;typedef struct { extended Mag, Arg; } ePolar;The corresponding definitions for Pascal/Delphi are contained in the unit VecLib:type fComplex = record Re, Im: Float; end;type dComplex = record Re, Im: Double; end;type eComplex = record Re, Im: Extended; end;type fPolar = record Mag, Arg: Float; end;type dPolar = record Mag, Arg: Double; end;type ePolar = record Mag, Arg: Extended; end;If, for example, a complex number z is declared as "fComplex z;", the real and imaginary parts of z are available as z.Re and z.Im, resp. Complex numbers are initialized either by setting the constituent parts separately to the desired value, e.g., z.Re = 3.0; z.Im = 5.7;p.Mag = 4.0; p.Arg = 0.7;(of course, the assignment operator is := in Pascal/Delphi).Alternatively, the same initialization can be accomplished by thefunctions fcplx or fpolr:C/C++:z = fcplx( 3.0, 5.7 );p = fpolr( 4.0, 0.7 );Pascal/Delphi:fcplx( z,
2025-04-04